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Abstract
Multiple unmanned aerial vehicle (UAV) systems have attracted extensive research in-
terest for their potential benefits of scalability and flexibility. To keep all the UAVs in the
desired formation, the navigation system must continuously provide highly accurate and
robust relative positioning results. In open‐sky areas, this mission can be achieved using
Global Satellite Navigation System (GNSS). However, the performance will be signifi-
cantly degraded in urban canyons, due to signal blockage or high multipath. In response,
we propose a cooperative relative navigation method that exploits peer‐to‐peer (P2P)
ranging measurements to assist GNSS, and introduce cooperative technology to relative
navigation. The principle of this approach is integrating multiple observations from
multiple sensors and vehicles in the formation, thereby (a) improves navigation accuracy
and (b) enhances the robustness against operational scenario changes. Simulations and
flight experiments are carried out to validate the proposed algorithm in urban environ-
ments, and the results reveal significant accuracy improvement comparing to GNSS only.
In addition, multiple sets of sensitivity analyses are performed to address the impact of
UAV numbers, formation geometry and accuracy of P2P ranging on navigation
performance.

1 | INTRODUCTION

In recent years, there has been an increasing interest in multiple
unmanned aerial vehicle (UAV) systems because of their
immense values. They are expected to be employed for cluster
reconnaissance and attack, UAV‐based aerial surveillance,
ground observation, small packet delivery, and commercial
shows [1–4]. Comparing to single UAV, multi‐UAV systems can
offer significantly enhanced flexibility (adaptability, scalability,
and maintainability) and robustness (reliability, survivability,
and fault tolerance) [5].

Accurate relative navigation information is the precondi-
tion to achieve multi‐UAV formation flight [6], especially for
formation maintenance [7] and collision avoidance [8]. In
open‐sky areas, Global Satellite Navigation System (GNSS) can
provide the relative position information with high accuracy. In
urban areas, however, the navigation performance will be
heavily degraded due to the surfaces that block out the signals
or generate signal reflections. Signal blockages could reduce the
satellite visibility, and signal reflections may lead to heavy

multipath interferences and non‐line‐of‐sight (NLOS) re-
ceptions [9–11]. On the other hand, due to the limitations of
cost, load, endurance, and size, a UAV cannot simultaneously
carry too many high‐precise sensors [12]. These issues bring
significant challenges to the relative navigation of multi‐UAV
systems in urban areas.

In the 1970s, Haken proposed the concept of ‘synergy’ and
pointed out that ‘1 þ 1> 2’ synergy effect can be achieved if
the subsystems of a system cooperate with each other around
the goal [13]. Cooperative navigation is a technology that uti-
lizes information communication from multiple vehicles. It can
effectively solve the aforementioned problems by means of
increasing the information redundancy and enhancing the
robustness of the navigation system [14]. Communication
network allows vehicles to exchange their information with low
latency by Bluetooth, ZigBee, or 5G technology [15]. Data
fusion combines multiple sources of information including
local observations from GNSS receivers and sensors [16].

The concept of cooperative navigation was first proposed
in the field of multi‐robot systems [17–19], and it has been
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recently extended to multi‐UAV field with a great deal of
strategies emerging. Gross et al. proposed a UAV–unmanned
ground vehicle cooperative navigation scheme to enhance the
navigation performance of the UAV operating in GNSS‐
challenging environments [20]. And Causa et al. presented a
UAV–UAV cooperative strategy where the navigation of the
UAV in harsh GNSS conditions is assisted by the UAV flying
in open‐sky areas [21]. However, most studies about coop-
erative navigation focused on absolute navigation of one
specific agent and failed to put emphasis on relative naviga-
tion of multi‐UAV systems. As for the relative navigation in a
dual‐ or multi‐UAV formation, some studies were carried out
and various multi‐sensor‐relative navigation approaches were
proposed. For example, Vision‐Based Navigation System [22],
Ultraviolet Direction and Ranging [23], and ranging radio [24]
are used to offer relative observations for enhancing relative
positioning. And Gross et al. designed a high‐accuracy rela-
tive navigation system by fusing Carrier‐Phase Differential
Global Positioning System (CP‐DGPS), peer‐to‐peer (P2P)
ranging radios, and low‐cost inertial measurement unit (IMU)
[25]. Xiong et al. investigated the relative navigation perfor-
mance provided by the fusion of ultra‐wideband (UWB) and
DGPS [26]. However, these relative navigation schemes only
employed the information from two agents rather than all the
measurements in the formation. Besides, a few recent
research works proposed the cooperative relative navigation
schemes for multi‐UAV systems [27–29], in which GNSS
measurements were not employed. And these schemes paid
more attention to formation control than the navigation
system itself. To the best of our knowledge, no work has
provided a systematic design, analysis, and evaluation about
cooperative relative navigation that fully exploits the mea-
surements in a multi‐UAV formation.

In response, this study introduces cooperative technology
into relative navigation systems for multi‐UAV formations by
exploiting GNSS observations and P2P ranging measurements.
Unlike the existing research works, the proposed algorithm can
not only fuse the information from different sensors for
relative navigation, but also employ the navigation information
from more than two UAVs for cooperation.

GNSS receivers can distinctly output code‐phase measure-
ments (i.e., pseudoranges) and carrier‐phase measurements (i.e.,
carriers). Stable carrier‐phase observations are often employed
to smooth the barcode measurements provided by receivers for
achieving higher accuracy. They are available in the situations
where high‐end receivers are used or the signal quality is
favourable (e.g., in open‐sky environments). In contrast, in
GNSS‐challenging environments, unsmoothed pseudoranges (i.
e., the raw observations provided by receivers) are usually used
for relative navigation due to the limited availability of stable
carrier‐phase measurements. This situation usually happens
when low‐cost receivers are utilized in urban dynamic applica-
tions. Therefore, pseudoranges are employed here for relative
navigation. As for P2P ranging measurement, it is based on one‐
dimensional range offered by UWB. We consider the poor sat-
ellite visibility issue in urban areas. NLOS reception and heavy
multipath interference [30] could lead to large measurement

errors, but they are not considered here. In future work, we will
develop a cooperative fault detection and exclusion (FDE)
framework to account for them.

The rest of this paper is organized as follows. Section 2
describes the measurement models. Section 3 proposes the
cooperative relative navigation algorithm and derives the
associated covariance. Then, Section 4 focuses on the evalua-
tion and validation of the proposed algorithms by simulations
and flight experiments. Finally, Section 5 draws the conclusions
and presents some perspectives for future work.

2 | MEASUREMENT MODELS

This section describes the models related to a GNSS‐based
relative navigation algorithm. Section 2.1 provides the GNSS
pseudorange double‐difference (DD) measurement models,
with its error models illustrated in Section 2.2. Then, Sec-
tion 2.3 introduces the P2P ranging measurements and its error
model.

2.1 | GNSS pseudorange double difference

For a given receiver b and a given satellite k, the pseudorange
observation equation is given by [31, 33]

ρkb ¼ dkb þ Ekb þ c
�

δtb � δtk
�
þ Ikb þ Tk

b þ εkb; ð1Þ

where
‐ The superscript corresponds to individual satellite and the

subscript is associated with individual receiver.
‐ d is the geometrical range between the satellite and the

receiver;
‐ E is the ephemeris error, that is, the difference between

the broadcast orbit and the actual value;
‐ c is the speed of light in vacuum;
‐ δtb denotes the clock offset of receiver b;
‐ δtk denotes the clock offset of satellite k;
‐ I represents the propagation delay of ionosphere; and
‐ T represents the propagation delay of troposphere;
‐ ε is the pseudorange noise term caused by multipath and

receiver noise.
The most significant error sources are shown in Equa-

tion (1). For receivers in close proximity, the satellite clock
error, satellite ephemeris, ionospheric delay, and tropospheric
delay contained in the measurements are approximately equal.
As a result, it is possible to eliminate errors that are common to
both receivers.

As shown in Figure 1, a single difference (SD) is a com-
bination by differencing the corresponding measurements
from two receivers, with which the satellite ephemeris, clock
errors, and the propagation errors are eliminated, but the
receiver clock‐offset term (i.e., δtr � δtb) remains unknown.
DD is formed by differencing two SD measurements from
different satellites, which removes the receiver clock‐offset

2 - SHEN ET AL.



term [32]. The major exception is multipath and receiver noise
since they are uncorrelated between receivers.

The pseudorange DD observation is formed with two
separate receivers and two satellites as follows:

ρjkrb ≜ ρð̂jÞ ¼
�

ρjr � ρjb
�
�
�

ρkr � ρkb
�
; ð2Þ

where subscripts r and b refer to the individual receivers; su-
perscripts j and k are the individual satellites, and satellite k is
chosen as the reference satellite which is usually the one with
the highest elevation angle; and superscript (ĵ ) denotes the new
sequence number of the visible satellites after removing
reference satellite k from the original sequence.

The objective of relative navigation is to estimate the
baseline vector, that is, the relative position vector between the
two receivers. To relate the DD observation ρ(ĵ ) with the
baseline vector x (from receiver r to receiver b), we divided ρ(ĵ )
into the error‐free component djkrb and the noise component
ϵjkrb as follows [33]:

ρð̂jÞ ¼ djkrb þ εjkrb: ð3Þ

The error‐free component djkrb is equal to the difference of
the baseline vector projections into the LOS vectors from the
receiver to two different satellites:

djkrb ≜
�
djr � djb

�
�
�
dkr � dkb

�
¼
h
1jb � 1kb

i
⋅ x ; ð4Þ

where 1jb is the normalized LOS vector from receiver b to
satellite j. Therefore, djkrb describes the effect of the unknown
baseline vector x.

The noise component ϵjkrb shows the effect of multipath
and receiver noise on the DD measurement:

εjkrb ≜ εð̂jÞ ¼
�

εjr � εjb
�
�
�

εkr � εkb
�
: ð5Þ

With Equation (4) and (5), Equation (3) can be rewritten as

ρð̂jÞ ¼ 1ð̂jÞb ⋅ x þ εð̂jÞ; ð6Þ

where 1ð̂jÞb ¼ ½1
j
b � 1kb�, that is, the difference between the LOS

vectors for satellite j and satellite k.

2.2 | Error models of the DD observations

With the DD processing technique illustrated in Section 2.1,
most of the error sources in pseudoranges have been elimi-
nated, leaving the DD observation errors dominated by
multipath and receiver noise.

Unsmoothed pseudoranges (i.e., without carrier smooth-
ing) are employed here. The nominal error models for the
multipath and receiver noise in the SD measurement corre-
sponding to satellite j (SDj ¼ ρjr � ρjb) can be modelled as [34]

σjMP;SD ¼
ffiffiffi
2
p
� σjMP ð7Þ

σjRN;SD ¼
ffiffiffi
2
p
� σjRN; ð8Þ

where σjMP is the standard deviation of multipath and σjRN is
the standard deviation of receiver noise; both are in metres.

Then the SD measurement error diagonal covariance ma-
trix CSD can be determined by combining the effects of
multipath and receiver noise as follows [35]:

CSDðj; jÞ ¼
�

σjMP

�2
þ
�

σjRN
�2
; j ¼ 1; 2;…;NS; ð9Þ

where NS is the number of the visible satellites to the receiver.
Based on Equation (2), the DD measurement error

covariance matrix CDD can be computed as [33]

CDD ¼ B ⋅ CSD ⋅ BT; ð10Þ

where B denotes the (NS� 1)‐by‐NS transformation matrix
from SD to DD, which is given by

B ¼

2

6
6
6
4

1 0 0
0 1 0
0 0 ⋱
0 0 0
0 0 0

� 1
� 1
⋮
� 1
� 1

0
0
0
⋱
0

0
0
0
1
0

0
0
0
0
1

3

7
7
7
5
; ð11Þ

where: all the entries in the k‐th column (corresponding to the
reference satellite k) are equal to � 1.

F I GURE 1 Formation of Global Satellite Navigation System single‐
difference observations
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2.3 | P2P ranging model

Modules such as UWB and vision sensor can provide relative
range measurement from peer to peer directly. UWB can
provide one‐dimensional range, while vision sensor can
provide three‐dimensional range. The P2P ranging measure-
ment model is based on one‐dimensional range offered by
UWB here. The measurement component can be divided into
the baseline component and the error component ωrb as
follows:

mrb ¼ x þ ωrb ¼ 1x ⋅ x þ ωrb ð12Þ

where mrb is the P2P ranging measurement between two
UAVs, x denotes the length of vectorx, and 1x is the
normalized vector from UAV r to UAV (b)

The noise error can be modelled as a zero‐mean Gaussian
distribution with standard deviation of σuwb.

3 | PROPOSED COOPERATIVE
RELATIVE NAVIGATION ALGORITHM

This section describes a GNSS‐based relative navigation al-
gorithm aided by P2P ranging measurements. Section 3.1
presents the equations to obtain the baseline between two
UAVs based on DD observations and P2P ranging. Next, the
mathematical model of the relative cooperative navigation al-
gorithm is derived in Section 3.2. Then, Section 3.3 introduces
the model of the related covariance matrix.

3.1 | Relative navigation between dual UAVs
based on DD and P2P ranging measurement

Assuming that there are NS satellites visible to both receivers
on UAV b and r, and the one with the highest elevation angle is
chosen as the reference satellite. Therefore, the measurements
of NS satellites form (NS � 1) DD observations. In the
meantime, the P2P ranging measurement is provided for the
two UAVs. To combine the P2P ranging measurement with the
DD observations, the combination and extension of Equa-
tions (6) and (12) are expressed as follows:

2

6
6
6
4

ρð1Þ

ρð2Þ
⋮

ρðNS� 1Þ

mrb

3

7
7
7
5
¼

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

1ð1Þb

1ð2Þb

⋮

1ðNS� 1Þ
b
1x

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

x þ

2

6
6
4

εð1Þ
εð2Þ
⋮

εðNS� 1Þ

ωrb

3

7
7
5: ð13Þ

Equation (13) can be rewritten as

ρrb ¼ A ⋅ x þ εrb ð14Þ

The baseline vector x can be estimated by weighted least‐
squares (WLS). The update for Δx̂ at each iteration is given by

Δx̂ ¼
�
ATW DA

�� 1
ATW D ⋅ Δρrb ð15Þ

where Δρrb is composed of two parts: one is the vector of DD
observations minus the expected DD values based on the
matrix A and the baseline solution given by the previous
iteration, the other is the difference of P2P ranging measure-
ment and the expected relative ranging value based on the
solution of previous iteration. In this equation, the observa-
tions are weighted by the diagonal matrix WD.

The weighting matrix WD is determined by the covariance
matrix CDD and the covariance of the P2P ranging measure-
ment. Let the weight of the ĵ th DD measurement be equal to
the reciprocal of the associated covariance, as shown in the
following equation:

W Dð̂j; ĵÞ ¼ ðCDDð̂j; ĵÞÞ� 1; ĵ ¼ 1; 2;…;NS � 1: ð16Þ

The P2P ranging measurement part of weighting matrix
WD is equal to the reciprocal of the P2P ranging measurement
associated variance:

W DðNS;NSÞ ¼
�
σ2
uwb

�� 1
ð17Þ

Then, the covariance matrix of all the observations, that is,
COB, is as follows:

COB ¼

"
CDD 0
0 σ2

uwb

#

ð18Þ

3.2 | Multi‐UAV cooperative relative
navigation algorithm

Assuming that there are N UAVs in the formation, the ob-
servations and communication structure among the UAVs are
shown as in Figure 2. The baseline estimates e between each
two UAVs can be provided by the solutions illustrated in
Section 3.1.

The UAV with the most visible satellites in the formation is
chosen as the base, which is identified as UAV b. Then, a local
East, North, Up (ENU) frame is established with UAV b as the
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origin. The relative positions of other UAVs can be obtained by
the baseline vector estimations about UAV b.

It is worth mentioning that in practice, the visible satellites
may be not sufficient to derive an absolute position estimate.
However, the relative navigation process may still be executed
in this case. And the absence of absolute position referencing
will influence the proposed relative navigation scheme by
disabling the following process: (a) the calculation of the
transformation matrix from the Earth‐centred Earth‐fixed
(ECEF) frame to the local ENU frame; and (b) the determi-
nation of the LOS vectors from the receiver to the satellite.
Fortunately, both (a) and (b) are not sensitive to the absolute
position, and an absolute position estimate with 10‐km accu-
racy is generally enough for them.

It should also be noted that the relative navigation between
two UAVs may fail due to limited visible satellites. For example,
it is possible that only two satellites are both visible to UAV i
and UAV r, that is, only one DD measurement can be formed.
In this case, the DD observation and the P2P ranging mea-
surement remain as follows:

�
ρir
ð1Þ

mir

�

¼

"
1ð1Þr
1x ;ir

#

x ir þ

�
ϵð1Þ
ωir

�

ð19Þ

where ρð1Þir is the DD observation, 1ð1Þr is the difference of the
unit vectors from UAV r to satellite 1 and the reference sat-
ellite, 1x,ir is the normalized vector from UAV i to UAV r, and
xir is the baseline vector from UAV i to UAV r, which is related
to the direction vectors from UAV 1 to UAV i and UAV r,
respectively, that is, x ir ¼ x br � x bi. Thus, with the estimated
baseline vector, Equation (19) can be rewritten as

"
ρð1Þir � 1ð1Þr ⋅ ebr

mir � 1x ;ir ⋅ ebr

#

¼

"
� 1ð1Þr
� 1x ;ir

#

x bi þ

�
εð1Þ
ωir

�

; ð20Þ

where ebr is the estimation solved in Equation (14), and 1x,ir
can be calculated by 1x ;ir ¼

ebr � x bi
|ebr � x bi|

.

As the fusion equation of the DD observation and the P2P
ranging measurement, Equation (20) can be rewritten as

f ir ¼H ir ⋅ x bi þ εir ð21Þ

Figure 3 shows the procedures for the algorithm based on
DD and P2P ranging measurements between dual UAVs. The
data acquisition unit is composed of the GNSS receivers and
P2P ranging modules (e.g., UWB) carried on the UAVs. And
the vehicle‐to‐vehicle (V2V) unit serves as the information
communication among the UAVs.

Figure 4 presents the flowchart of the proposed coopera-
tive relative navigation algorithm scheme based on the esti-
mations solved by dual UAVs. This algorithm will be illustrated
in detail as follows.

First, the baseline vector between UAVs b and i can be
given by

2

6
6
6
6
6
4

ebi
ebu þ eui

⋮
ebN þ eNi

f ir
mbi

3

7
7
7
7
7
5

¼

2

6
6
6
6
6
4

I 3�3
I 3�3

⋮
I 3�3
H ir
1x ;bi

3

7
7
7
7
7
5

x bi þ

2

6
6
6
6
6
6
6
4

ε̂bi
ε̂bu þ ε̂ui

⋮
ε̂bN þ ε̂Ni

εir
ωbi

3

7
7
7
7
7
7
7
5

; ð22Þ

where e is the baseline estimate in previous step; I3�3 is a 3‐by‐
3 identity matrix; ε̂ is the 3‐by‐3 error matrix of the baseline
estimation.

Equation (22) can be rewritten as:

y bi ¼G ⋅ x bi þ νbi ð23Þ

The baseline vector xbi can be estimated by WLS. The
update for Δx̂ bi at each iteration is given by

Δx̂ bi ¼
�
GTWMG

�� 1
GTWM ⋅ Δy bi ð24Þ

where Δybi is the vector of observations in Equation (23)
minus the expected values. The initial value of the baseline
vector is given by the result of the solution in Section 3.2, and
the observations, that is, the estimated baseline vector e, will
be updated by the solution x. The observations are weighted
by the diagonal matrix WM, which is determined by the
associated covariance:

WMðl; lÞ ¼ ðCMðl; lÞÞ
� 1

ð25Þ

The covariance matrix CM is a diagonal matrix decided by
the covariance matrix of each observation:

F I GURE 2 Observations and communication structure in the multi‐
unmanned aerial vehicle system
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CM

¼

2

6
6
6
6
6
6
6
6
6
6
6
6
4

CeðbiÞ

CeðbuþuiÞ

⋱
CeðbNþNiÞ

Cf ðirÞ

σ2
uwb

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð26Þ

where the subscript e(bi) indicates the estimation of the
baseline from UAV b to UAV i; the subscripts e(bu þ ui)
indicate the sum of the estimations, that is, ebu þ eui; and the
subscript f(ir) indicates the fusion equation of the observations
between UAV i to UAV r. The corresponding covariance
matrix for each observation will be discussed in Section 3.3.

The solution xbi will be updated as the observation of the
baseline from UAV b to UAV i. And the baseline estimations
from other UAVs to UAV i can be updated by

2

4
eji

ebi � ebj
mji

3

5¼

2

4
I 3�3
I 3�3
1x ;ji

3

5x ji þ

2

4
ε̂ji

ε̂bi � ε̂bj
ωji

3

5 ð27Þ

Equation (27) can be rewritten as

y ji ¼G
ˆ

⋅ x ji þ ϵji ð28Þ

The baseline vector xji can be estimated by WLS. The
update for Δx̂ ji at each iteration is given by

Δx
ˆ
ji ¼

�

G
ˆ T

W
ˆ
G
ˆ �� 1

G
ˆ T

W
ˆ

⋅ Δy ji ð29Þ

where Δy1i is the difference of the observations in Equa-
tion (28) and the expected values. The estimated baseline
vector e will be updated by the solution xji. The observations
are weighted by the diagonal matrix Ŵ, determined by the
associated covariance:

W
ˆ
ðl; lÞ ¼ ðC

ˆ
ðl; lÞÞ� 1 ð30Þ

The covariance matrix Ĉ is a diagonal matrix decided by
the covariance matrix of each observation:

C
ˆ
¼ diag

�
CeðjiÞ;Ceðbi� bjÞ; σ2

uwb

�
ð31Þ

F I GURE 3 Flowchart of the relative navigation algorithm based on
double‐difference and peer‐to‐peer ranging measurements

F I GURE 4 Flowchart of the cooperative relative navigation algorithm
by multi‐unmanned aerial vehicles
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3.3 | Covariance estimation

The covariance matrix of the observation eui can be modelled
as

CeðuiÞ ¼ SD;uiCOB;uiS
T
D;ui ð32Þ

where matrix SD;ui ¼ ðAT
uiW D;uiAuiÞ

� 1AT
uiW D;ui from the

solution in Equation (15).
As for ebu þ eui, which is the sum of two observations e

and ebi� ebu, which is the difference of two observations, the
covariance can be given by

CeðbuþuiÞ ¼ CeðbuÞ þ CeðuiÞ þ 2� Ceðbu;uiÞ ð33Þ

Ceðbi� buÞ ¼ CeðbiÞ þ CeðbuÞ � 2� Ceðbi;buÞ ð34Þ

where Ce(bu,ui) represents the covariance matrix between ebu
and eui. This is formed by the observations of two estimations,
that is, Ceðbu;uiÞ ¼ SD;buCOBðbu;uiÞS

T
D;ui, with COB(bu,ui) as

COBðbu;uiÞ ¼

�
CDDðbu;uiÞ 0

0 0

�

ð35Þ

where the (n� 1)‐by‐ (m� 1) matrix CDD(bu,ui) is as follows:

CDDðbu;uiÞðp; qÞ ¼

8
<

:

�
σkuser;u

�2
; p ≠ q

�
σkuser;u

�2
þ
�

σpuser;u
�2
; p¼ q

ð36Þ

where n is the number of the common‐view satellites to UAV b
and u, while m is the number of the common‐view satellites to
UAV u and i; therefore, the number of DD observations are
(n� 1) and (m� 1), respectively; subscript k denotes the refer-
ence satellite and σpuser;u is the user error of receiver u to sat-
ellite p, which can be given by the standard deviation of
multipath and receiver noise [34]:

σpuser;u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
σ p
MP

�2
þ
�
σ p
RN

�2
q

ð37Þ

Therefore, the covariance estimation of the baseline will be
updated by

CeðbuÞ ¼ SM;buCM;buS
T
M;bu ð38Þ

where matrix SM;bu ¼ ðG
T
buWM;buGbuÞ

� 1GT
buWM;bu from the

solution in Equation (24), and CM,bu comes from
Equation (26).

4 | EXPERIMENTS AND RESULTS

In this section, simulations are carried out to evaluate the
performance of the relative navigation system. In Section 4.1,
simulation configurations are presented, and the simulations
are performed in Section 4.2. The sensitivity analyses are car-
ried out in Section 4.3.

4.1 | Simulation configurations

A MATLAB‐based simulation platform for a 5‐UAV system
relative navigation performance evaluation is established. The
duration of simulation is 1000 s. Table 1 shows the descriptions
of the three simulated methods which represent various con-
figurations (regarding measurements and cooperative option)
with single‐frequency receivers. The standard deviations of the
receiver‐dependent range measurements errors (i.e., receiver
noise and multipath) are given in Table 2. Please note, the large
measurement errors caused by heavy multipath and NLOS
reception are not considered here. Indeed, they should be
regarded as faults and will be addressed by a cooperative FDE
scheme in the future work. As for the P2P ranging measure-
ment obtained by UWB modules, the standard deviation σuwb
is set to 0.1 m according to the datasheet of a well‐known
UWB module, that is, DWM 1000.

Figure 5 presents the skyplot of the satellites used in the
following process. Additionally, the satellites with the highest
elevation angle in each constellation were chosen as the
reference satellites, that is, G27 for Global Positioning System
(GPS) and C07 for Beidou. To simulate urban canyon, two
walls are set both on the west side and the east side of the
multi‐UAV formation as shown in Figure 6, where the blue
dots indicate the UAVs and the grey indicates the walls. The
UAVs are numbered from high to low in height. In this

TABLE 1 Descriptions for the methods compared

No. Measurements Cooperative or not? Label

1 Pseudorange � DD

2 Pseudorange � DD&P2P

P2P ranging

3 Pseudorange √ CRN

P2P ranging

Abbreviations: CRN, Cooperative Relative Navigation; DD, double difference; P2P,
peer‐to‐peer.

TABLE 2 Standard deviations of the receiver‐dependent range
measurements errors in a single‐frequency receiver [36]

Contributing source Standard deviation (m)

Receiver noise 0.3

Multipath 0.5
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circumstance, the condition of available satellites for the UAV
5 is shown in Figure 7, where red dots represent the visible
satellites while black points represent the invisible ones which
are blocked by the grey shadings.

Table 3 shows the list of the visible satellites for each UAV
in the formation after the urban canyon is set. The scenarios can
be described as open sky, middle urban, and deep urban [37].

4.2 | Simulation for performance evaluation

First, we analyse the accuracy of relative navigation performance
by the comparing the results of the DD method and the
DD&P2P method. Both of them are based on the information
communicated between dual UAVs. Figure 8(a) presents the
relative positioning errors of the baseline from UAV 1 to UAV 2

(in open sky). The histograms show that, comparing to the DD
approach, the algorithm with P2P ranging measurement im-
proves the accuracy by 23.42%, from 2.22 to 1.70 m. On the
other hand, Figure 8(b) suggests the relative positioning errors
of the baseline from UAV 1 to UAV 5 (in deep urban). It shows
that P2P ranging measurement helps improve the accuracy of
the baseline significantly in urban canyon, with the value reduced
by 81.77%, from about 14.15 to 2.58 m. The comparisons are
summarized in Table 4. The results suggest that the overall
relative navigation performance will be severely degraded due to
limited satellite visibility and poor measurement accuracy in
urban environment. Additionally, the performance can be
enormously improved by employing P2P ranging measurements
to pseudorange DD, especially in GNSS challenging situations.

Then, we compare the performance with and without
information cooperated among multiple UAVs. As seen from
Figure 9(a), the CRN algorithm improves the accuracy from
1.70 to 1.02 m (about 40.00% degraded) by making full use of
the information among the system rather than between the
dual UAVs. For the baseline from UAV 1 to UAV 5 as shown in
Figure 9(b), the accuracy is improved from about 2.58 to
1.76 m (about 31.78% degraded) through the CRN algorithm.
The comparison results are summarized in Table 5. It is
indicated that the relative navigation performance can be
significantly improved by cooperating the information of
multiple UAVs. Therefore, cooperation is highly desired for
multi‐UAV systems, especially in urban navigation applications.

In addition, Figure 10 provides a direct view of the per-
formance comparison among all the methods in order to
quantitatively reveal the impacts of various factors on the
navigation performance. Accuracy is presented in the form of
cumulative distribution function (CDF). CDF specifies the
probability or normalized frequency that a variable X takes a
value less than or equal to a given value x. It shows that
employing P2P ranging measurement can improve the tradi-
tional DD method dramatically, especially in the up direction,

F I GURE 5 Skyplot of the satellites in use (G‐GPS, C‐Beidou)

F I GURE 6 Multi‐unmanned aerial vehicle formation in urban canyon

F I GURE 7 Skyplot of the satellites in urban canyon (G‐GPS, C‐
Beidou)
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TABLE 3 The visible satellites for each UAV in the formation

Constellation PRN UAV 1 UAV 2 UAV 3 UAV 4 UAV 5

G 08 √ √ � � �

09 √ √ � � �

26 √ √ √ √ √

27 √ √ √ √ √

31 √ √ √ � �

C 07 √ √ √ √ √

09 √ √ √ √ √

10 √ √ √ � �

11 √ √ √ √ √

16 √ √ √ √ √

Total number 10 10 8 6 6

Scenarios Open sky Open sky Middle urban Deep urban Deep urban

Note. G – GPS, C – Beidou.
Abbreviations: PRN, Pseudo‐Random Noise; UAV, unmanned aerial vehicle.

F I GURE 8 Accuracy of the baseline ([a] from UAV 1 to UAV 2 and [b]
from UAV 1 to UAV 5) comparison between the two relative navigation
methods with and without peer‐to‐peer ranging

TABLE 4 The comparison between the
relative performance

Baseline Direction

Accuracy (m)

Improvement (m) PercentDD DD&P2P

UAV 1–2 open sky E 0.80 0.66 0.14 17.50%

N 0.65 0.64 0.01 1.54%

U 1.97 1.40 0.57 28.93%

3D 2.22 1.70 0.52 23.42%

UAV 1–5 deep urban E 7.45 2.42 5.03 67.52%

N 2.28 0.81 1.47 64.47%

U 11.81 0.41 11.4 96.53%

3D 14.15 2.58 11.57 81.77%

Abbreviations: DD, double difference; P2P, peer‐to‐peer; UAV, unmanned aerial vehicle.

F I GURE 9 Accuracy of the baseline ([a] from UAV 1 to UAV 2 and [b]
from UAV 1 to UAV 5) comparison between the two relative navigation
methods with and without cooperation
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followed by the improvement in the east and north. Besides,
cooperative relative navigation technology can further the
improvement, especially in the north and up directions.

To sum up, it is necessary for applications of multi‐UAV
formation in urban environment to solve the relative navigation
issues. It is proved that employing P2P ranging measurements to
the pseudorange DD method can preliminarily improve the
accuracy. Additionally, cooperative navigation algorithm can
reduce the relative position errors further. Moreover, from this
analysis, it is apparent that P2P ranging measurements can offer
more benefit in poor environmental conditions.

In order to validate the covariance model, we compare the
root of the calculated covariance, that is, SIGMA, with the

statistical standard deviation. Figure 11 presents the statistical
and estimated error standard deviations, with (a) representing
the middle urban environment and (b) representing the deep
urban environment. The results suggest that the baseline can
be estimated with satisfactory accuracy by using the proposed
algorithm, and they also prove the feasibility of the covariance
estimation methodology.

4.3 | Sensitivity analysis

To reveal the impacts of the scale of the multi‐UAV formation,
the formation geometry, and the accuracy of the P2P ranging

TABLE 5 The comparison between the
relative performance

Baseline Direction

Accuracy(m)

Improvement (m) PercentDD&P2P CRN

UAV 1–2 open sky E 0.66 0.55 0.11 6.67%

N 0.64 0.59 0.05 7.81%

U 1.43 0.62 0.81 56.64%

3D 1.70 1.02 0.68 40.00%

UAV 1–5 deep urban E 2.42 1.56 0.86 35.54%

N 0.80 0.74 0.06 7.50%

U 0.40 0.38 0.02 5.00%

3D 2.58 1.76 0.82 31.78%

Abbreviations: CRN, Cooperative Relative Navigation; DD, double difference; E, east; N, north; P2P, peer‐to‐peer; U, up;
UAV, unmanned aerial vehicle.

F I GURE 1 0 A comprehensive performance comparison among the three methods
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module, we conduct the following sensitivity analysis. The 16
scenarios listed in Table 6 are simulated to perform this
sensitivity analysis. For each scenario, we conduct Monte‐Carlo
simulations to generate 1000 random scenarios, which are used
to statistically determine the error standard deviations.
Although the formation geometry or the formation scale is
changed as required, the position of the highest UAV in the
formation is fixed among all the cases, which is set as the origin
of the local ENU frame. The scale of multi‐UAV formation
can be distinguished by the number of the UAVs. The for-
mation geometry in the local ENU frame can be classified into
the difference of one direction with the other two directions
fixed. For example, all the UAVs are different in U direction
while they have the same coordinates in E and N directions.

Besides, ‘All’ in Table 6 means that the formation geometry is
not fixed in any directions.

Figure 12 shows the impact of formation geometry by the
three cases, which are different in E, N, and U directions,
respectively. To make the analysis clear, urban environment is
not considered here. It shows that the original difference in
one specific direction impacts the improvement in this direc-
tion achieved by the DD&P2P and CRN algorithms.

Figure 13 shows the influence of the accuracy of P2P
ranging module UWB among the cases listed in Table 6. In
comparison with the results of DD, both the performance of
the DD&P2P and CRN methods will be degraded with the
accuracy of P2P ranging measurements getting poorer as
shown by Figure 14. When the error of P2P ranging is larger

F I GURE 1 1 The statistical (solid lines) and estimated (dashed lines) error standard deviations

TABLE 6 Simulation configurations in
various scenarios

Case no. Number of UAVs Formation geometry UWB accuracy (m) Urban environment

1 5 E 0.1 �

2 N

3 U

4 5 U 0.01 �

5 0.05

6 0.1

7 0.5

8 1.0

9 2.0

10 2.5

11 3.0

12 3 All 0.1 √

13 5

14 7

15 10

16 15

Abbreviations: E, east; N, north; U, up; UAV, unmanned aerial vehicle; UWB, ultra‐wideband.
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than the one of DD, P2P ranging measurement will bring
negative influence rather than positive effect. This kind of
error is considered as fault, which should be excluded in future
work.

The influence of the formation scale on the improvement
achieved by the proposed cooperative relative navigation

algorithm is suggested in Figures 15 and 16. To accomplish the
proposed cooperative relative navigation system, the formation
should include at least three UAVs. Comparing the results of
the CRN method to the traditional DD, it is revealed that the
larger the scale is, the better the performance will be accom-
plished by cooperation among the UAVs.

F I GURE 1 2 The impact of formation geometry

F I GURE 1 3 The impact of the peer‐to‐peer ranging accuracy

F I GURE 1 4 Improvement achieved by cooperation with different
accuracy of peer‐to‐peer ranging

F I GURE 1 5 The impact of the formation scale

F I GURE 1 6 Improvement achieved by cooperation in different multi‐
unmanned aerial vehicle formation scales
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4.4 | Flight test and experimental results

The objective of flight experiments is to validate the proposed
algorithm with real data. A test platform is established based
on three quadcopters, which can represent the minimum scale
of a multi‐UAV system and can therefore be used for algorithm
validation. As shown in Figure 16, the relative navigation
performance will be improved more when the number of
UAVs increases. And we will demonstrate the algorithm be-
haviours with more UAVs in our future work. As shown in
Figure 17, each UAV is equipped with several devices for data
collection. Raw GNSS measurements (i.e., pseudoranges) are
acquired by ublox F9P, a lightweight DFMC GNSS receiver. As
an open‐source GNSS software [38], Real‐time kinematic
(RTK) records and stores the data on the on‐board computer
(i.e., Raspberry Pi 3Bþ). The network RTK subscription ser-
vice, that is, FindCM provided by Qianxun SI [39], is utilized to
compute the reference position solutions of the UAVs. The
P2P ranging measurements are offered by UWB DWM 1000
modules.

Before the flight experiment, we have evaluated the ranging
accuracy of this module, and the result suggests that a root‐
mean‐square (RMS) accuracy of about 0.065–0.15 m is
achieved when the actual distance ranges from 0.1 to 10 m.
This basically verifies the value (i.e., 0.1 m) given in the data-
sheet of DWM 1000. However, the UWB range accuracy may
be degraded by the obstacles in the surroundings. To avoid this
negative effect, we pre‐design the attitude of the UAVs to make
sure that the UWB modules are also directly visible to each
other without any obstacle in their LOS.

The fault caused by NLOS and multipath interference is
not taken into consideration here, and it will be discussed in
future work. To obtain real data and avoid such faults, the
flight experiment was carried out in the campus as shown in
Figure 18, where many satellite signals were available and
favourable GNSS positioning performance was achieved.
Specifically, for safety concerns, high difference was set among
the three vehicles. Therefore, the highest vehicle is named UAV
01, and the lowest one is named UAV 03.

To simulate an urban environment, part of visible satellites
of UAV 03 was blocked in data processing with only four GPS
satellites left. At the same time, there were only eight satellites
visible to both UAV 01 and UAV 02. In this way, the scenario
can represent the typical satellite visibility in urban areas.
Figure 19 shows the comparison of the relative positioning
solutions between UAV 01 to UAV 03 computed by DD
method and RTK, which indicates the availability of the
collected data. The sensitivity analysis over formation geome-
try is conducted in the simulation part, and this analysis is not
repeated in the experiment. Therefore, it is acceptable that the
formation geometry is time‐varying (as shown in Figure 19) in
the flight experiment.

The relative positioning errors are reported with respect to
the reference values determined by the RTK technique. By
comparing DD&P2P with DD, it can be seen in Figure 20 that
P2P ranging measurements can effectively improve the relative
positioning solutions. It is observed that the estimation errors

are not zero‐mean, especially in the North and Up directions.
This is caused by the pseudorange bias in the low‐elevation
satellite. This measurement bias may be caused by multipath
effects and can directly lead to the bias in the baseline estimate.

F I GURE 1 7 Experimental unmanned aerial vehicle system

F I GURE 1 8 Flight experiment in campus with three unmanned aerial
vehicles

F I GURE 1 9 The relative positioning results by RTK and double
difference. RTK, Real‐time kinematic
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Then, we compare the relative navigation accuracy be-
tween the DD&P2P method and the CRN approach with
Figure 21 presenting the results. As seen, the relative posi-
tioning error is reduced further by CRN method. Since the
relative positioning solutions estimated by DD&P2P and CRN
are close, it is not easy to distinguish from RTK on the scatter
plot. Therefore, the RMS value is discussed in the histogram,
as shown in Figure 22(a). The comparison results indicate that

the cooperation of multiple UAVs reduces the relative posi-
tioning error from 1.24 to 1.01 m, and the performance is
improved by 18.55%. The relative positioning error is below
0.5 m in the E and N directions. In addition, the CDF graph
analysis is performed according to the data results, as shown in
Figure 22(b).

The multi‐UAV platform flight experiment verifies the al-
gorithm with real data and reflects the effective improvement

F I GURE 2 0 The relative positioning error comparison between the two relative navigation methods (DD and DD&P2P)

F I GURE 2 1 The relative positioning error comparison between the two relative navigation methods (DD&P2P and CRN)

F I GURE 2 2 Accuracy of the baseline
comparison between the two relative navigation
methods with and without cooperation in the forms
of (a) histogram and (b) cumulative distribution
function
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of the relative navigation performance of the multi‐UAV for-
mation by the proposed cooperative relative navigation
algorithm.

5 | CONCLUSION AND FUTURE WORK

We propose a cooperative relative navigation algorithm for
multi‐UAV systems based on GNSS and P2P ranging
measurements. Simulations and experiments demonstrate that
employing P2P ranging measurements to assist the traditional
DD pseudorange can effectively improve the navigation
accuracy, especially under GNSS challenging scenarios. In
addition, the performance of relative navigation can be further
improved by cooperating the information from other UAVs in
the formation, which builds a cooperative relative navigation
technology. Sensitivity analyses suggest that the performance is
highly dependent on the formation geometry, the formation
scale, and the accuracy of the P2P ranging measurements. And
these influencing factors have been quantitatively addressed in
the results.

The future work includes (a) conducting performance
evaluation with more realistic error models, (b) designing a
cooperative FDE scheme to account for large errors caused
by heavy multipath interference and NLOS reception, and
(c) employing other sensors, such as barometer, IMU and
vision.
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